Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <CV> <30/6/2022>

CONTINUOUS INTERNAL EVALUATION - 2

Dept:CV	Sem / Div: 4	Sub:Applied Hydraulics	S Code: 18CV43
Date: 05/07/22	Time:9.30- 11.00am	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Ma rks	100000	CO's				
	PART A								
1	_	Obtain the conditions for economical trapezoidal section in which side slope is constant.	7	L2	CO2				
		The discharge of water through a rectangular channel of width 8m is 15 m ³ /s, when depth of flow of water is 1.2m. Calculate i) Specific energy of flowing water. ii) Ciitical depth and critical-velocity iii) Value of minimum specific energy.		L3	CO2				
	С	A trapezoidal channel has side slopes of 1H:2V and the slope of bed is 1 in 1500. The area of the section is 40m^2 . Find the most economical dimensions of channel. Also determine the discharge of the channel. Take $C = 50$.		L3	CO2				
OR									
2	a	Derive conditions for most economical rectangular channel.	10	L2	CO2				
	b Explain with a neat sketch of specific energy curve. Also derivan expression for critical depth, critical velocity and minimus specific energy. A rectangular channel which is laid on a botto slope of 0.0064 is to carry 20 m³/s of water. Determine the wid of the channel when the flow is in critical condition. Tal Manning's coefficient =0.015			L3	CO2				
	c	A 8m wide channel conveys 15m³/s of water with a depth of	8	L3	CO2				
	Page: 1/2								

Page: 1 / 2

	1.2m. Obtain the following: i) Specific energy of the flowing water ii) Critical depth and critical velocity and minimum specific energy. iii) Froude number and state when flow is subcritical or supercritical								
PART B									
3 a	Derive an expression for length of Back water curve	7	L2	CO3					
b	Derive an expression for depth of hydraulic jump in terms of upstream Froude number	8	L3	CO3					
c	In a rectangular channel of width 24m and depth of flow is 6m. The rate of flow is 86.4 m ³ /S. if the bed slope of the channel is 1 in 4000. Then find the slope of free surface of water. Take C = 60.	10	L2	CO3					
OR									
4 a	Explain following slope profiles: i) Critical slope ii) Mild slope iii) Steep slope also draw profiles of M1, M2 and M3	7	L2	CO3					
b	Find the free surface slope in a rectangular channel of width 20m, having depth of flow 5m. The discharge through the channels is 50m ³ /s. The longitudinal bed slope is 1 in 4000. Take C = 60.		L3	CO3					
C	The depth of flow of water at a certain section of a rectangular channel of 2m wide, is 0.3m. The discharge through the channel is 1.5m3/s. Determine whether a hydraulic pump will occur, and if so find its height and loss of energy per Newton of water.		L2	CO3					

Prepared by:
Dr.Sowmya N J